MAKROZOOBENTOS MEDIÁLU JAZIER ZÁPADNÝCH TATIER

Ferdinand Šporka

ÚVOD

Západné Tatry ako veľhorský podcelok Tatier, rovnako ako Vysoké Tatry, sú pohorím s výskytom jazier (plies) ľadovcového pôvodu. Tieto vznikli v depresiách, ktoré vyhylvil ľadovec (hlbené plesá), zahradila moréna (hradené plesá) alebo v zniženine po roztopeňi sa krych „mŕtveho ľadu“ (Zelené pliesko pod Zverovkou). Plesá ležia od pásmo lesa (983 m n.m.) až po alpiínske vegetačné pásmo (1876 m n.m.), líšia sa svojou veľkostou, hlbkou, prietočnosťou, expozíciou a množstvom a typom sedimentov na ich dne. V Západných Tatrách sa vyskytuje 20 jazier.

MATERIÁL A METÓDY

Odber vzoriek zoobentosu sme vykonali z mediálu 13 jazier. Na odber sme použili Ekman-Birgeov drapák (225 cm²), pričom sme z jednotlivých jazier odobrali 2—5 vzoriek v závislosti od charakteru dna a sedimentov. Vzorky zoobentosu sme odobrali buď jednorazovo alebo dvakrát, a to v mesiacoch jún, resp. júl a september. Na premývanie sme používali sadu sit, najhustejšie s rozmermi ők 0,5 mm. Z takto spracovanej
Výsledky a diskusia

V mediální jazieru sme zistili zástupcov 9 bentickej skupín. K dominantným skupinám s vysokou frekvenciou výskytu patrili málošteťinové (Oligochaeta), larvy pakomárov (Chironomidae) (zhradne 11 plies) a lastúrniky (Bivalvia) (8 jazier). Ostatné benticke skupiny sa vyskytli v jednom, nanajvýš v štyroch plesách (tab. 1).

Málošteťinovcom (Oligochaeta) ako jednej z dominantných skupín je venovaná osobitná práca v tomto čísle zborníka (Šporka, 1992).

Turbellaria zastúpené druhom Crenobia alpina sa vyskytli len v dvoch plesách, a to v Prvom Roháčkom plese, kde tento druh zistil aj Obr (1955), a v Tatliakovom plese. V Tatliakovom plese je výskyt druhu Crenobia alpina pochopiteľný, pretože je to silne prietocné pleso, kým jej výskyt v mediální Prvého Roháčskeho plesa Obr (1955) dáva do súvislosti s vývermi spodnej vody na jeho dne.

Hirudinea sa vyskytovali v Tretom a Druhom Roháčkom plese. V obidvoch plesách išlo o druh Erpobdella monostrata, hoci Obr (1955) vo svojej práci predpokladá, že ide o druh Erpobdella octoculata. Tento druh však v jazerách Západných Tatier nebol zistený, hoci sa vyskytuje v mediální Štrbského plesa (Vysoké Tatry).

Výskyt druhu Pisidium casertanum (Bivalvia) vo viacerých jazerách Západných Tatier neprekvapuje, pretože bol hojne zastúpený aj v jazerách Vysokých Tatier (Kasperek, Šporka, 1991).

V litorální jazer sa navyše z permanentnej fauny vyskytli ešte Amphipoda (Krno, 1991).

Dalšími skupinami v zoobentose boli larvy hmyzu predstavujúce zástupcov temporárnej fauny. Ich výskyt v mediální jazer bol v porovnaní
|-------|-----------------|-----------------|-------------------|-------------------|------------------|-----------------|------------------|-----------------|-----------------|------------------|-----------------|-----------------|-----------------|
| TURBELLARIA
Crenobia alpina (Dana) | + | + | + | + | + | + | + | + | + | + | + | + | + |
| Oligochaeta | | | | | | | | | | | | | |
| Hirudinea
Erpobdella monostriata (Ged) | | | | | | | | | | | | | |
| Bivalvia
Pisidium casertanum Poli | + | + | + | + | | + | + | + | + | | | |
| Megaloptera larvae
Sialis lutaria (L.) | | | | | | + | + | + | + | | | |
| Trichoptera larvae g. sp. | | | | | | + | | | | | | |
| Coleoptera larvae
Agabus solieri Anb.
Agabus sp.
Helophorus aquaticus (L.) | | | | | | | | | | | | | |
| Chironomidae larvae not. det. | + | + | + | + | + | + | + | + | + | + | + | + |
| Chaoboridae larvae
Chaoborus obscuripes (Wulp) | | | | | | | | | | | | | |
s výskytom v litoráli omnoho nižší. V litoráli jazier, ako zistil Krno (1991), pritom patrili k dominantným skupinám. V porovnani s litorá-
lom sa v mediáli nevyskytovali Ephemeroptera, Odonata, Plecoptera a Heteroptera. Chaoboridae zastúpene dru-

Tab. 2. Abundancia (A — ind. m⁻²) a biomasa (B — g.m⁻²) (vlika formalínová

<table>
<thead>
<tr>
<th>Počet odberov</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jazero</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nadmorská výška (m n. m.)</td>
<td>1876</td>
<td>1876</td>
<td>1834</td>
<td>1728</td>
<td>1718</td>
</tr>
<tr>
<td>Rozloha (ha)</td>
<td>0,86</td>
<td>?</td>
<td>0,41</td>
<td>1,13</td>
<td>1,45</td>
</tr>
<tr>
<td>Max. hlbka (m)</td>
<td>12,5</td>
<td>5,0</td>
<td>4,0</td>
<td>8,0</td>
<td>8,1</td>
</tr>
<tr>
<td>Odber z hlbk (m)</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>6—7</td>
<td>7</td>
</tr>
<tr>
<td>TURBELLARIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0,13</td>
<td>1,185</td>
<td>2,38</td>
<td>0,05</td>
<td>0,06</td>
</tr>
<tr>
<td>OLIGOCHAETA</td>
<td>A</td>
<td>15</td>
<td>0,11</td>
<td>118</td>
<td>15</td>
</tr>
<tr>
<td>B</td>
<td>0,01</td>
<td>1,10</td>
<td>0,17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIRUDINEA</td>
<td>A</td>
<td>11</td>
<td>0,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0,01</td>
<td>1,10</td>
<td>0,17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIVALVIA</td>
<td>A</td>
<td>15</td>
<td>0,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0,01</td>
<td>1,10</td>
<td>0,17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEGALOPTERA larva</td>
<td>A</td>
<td>266</td>
<td>322</td>
<td>2754</td>
<td>444</td>
</tr>
<tr>
<td>B</td>
<td>0,69</td>
<td>0,22</td>
<td>6,57</td>
<td>0,58</td>
<td>0,66</td>
</tr>
<tr>
<td>TRICHOPTERA larva</td>
<td>A</td>
<td>3969</td>
<td>9,46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1,73</td>
<td>0,89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLEOPTERA larva</td>
<td>A</td>
<td>293</td>
<td>333</td>
<td>399</td>
<td>489</td>
</tr>
<tr>
<td>B</td>
<td>0,93</td>
<td>0,22</td>
<td>9,46</td>
<td>1,73</td>
<td>0,89</td>
</tr>
<tr>
<td>ZOOBENTOS spolu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>293</td>
<td>333</td>
<td>3969</td>
<td>399</td>
<td>489</td>
</tr>
<tr>
<td>B</td>
<td>0,93</td>
<td>0,22</td>
<td>9,46</td>
<td>1,73</td>
<td>0,89</td>
</tr>
</tbody>
</table>

132
hom *Chaoborus obscures*, ktoré sa v litoráli nevyskytovali, patrili spolu s druhom *Helophorus aquaticus* (*Coleoptera*) k jediným zástupcom bentickej fauny na dne dystrofného Zeleného plieska pod Zverovkou. Absenciu pravých bentontov v mediálí tohto jazera možno vysvetliť nepriaznivými podmienkami pre ich život (absencia O₂, výskyt H₂S).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1697</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,74</td>
<td>1,19</td>
<td>?</td>
<td>?</td>
<td>0,61</td>
<td>0,21</td>
<td>2,22</td>
<td>0,28</td>
<td>0,31</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>2</td>
<td>3,7</td>
<td>1,3</td>
<td>6,5</td>
<td>1,2</td>
<td>3,7</td>
<td>3,7</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>1,5—2</td>
<td>2,5—3</td>
<td>1—1,5</td>
<td>6—8</td>
<td>1,5</td>
<td>3,5</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,13</td>
<td>2,754</td>
<td>1,883</td>
<td>0,02</td>
<td>0,45</td>
<td>0,02</td>
<td>17</td>
<td>0,06</td>
<td>1,09</td>
</tr>
<tr>
<td></td>
<td>2,85</td>
<td>9,54</td>
<td>3,45</td>
<td>2,94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>11</td>
<td>3,45</td>
<td>2,94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>11</td>
<td>3,45</td>
<td>2,94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>300</td>
<td>17</td>
<td>1331</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>7,45</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,01</td>
<td>227</td>
<td>130</td>
<td>1055</td>
<td>897</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,34</td>
<td>0,16</td>
<td>0,10</td>
<td>0,73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,305</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>223</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1599</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,13</td>
<td>6,03</td>
<td>15,37</td>
<td>5,44</td>
<td>12,70</td>
<td>1,17</td>
<td>5,42</td>
<td>2,35</td>
<td></td>
</tr>
</tbody>
</table>

133
Naopak, osídlenie litorálu Zeleného plieska pod Zverovkou bentickou faunou bolo spomedzi ostatných plies najvyššie (K r n o, 1991).

Abundancia zoobentosu sa v mediálnom jazier pohybovala medzi 18—4708 ind. m⁻² a biomasa medzi 0,13—1537 g. m⁻² (tab. 2). V litoráli, ako uvádza K r n o (1991), abundancia (97—3050 ind. m⁻²) a biomasa (0,06—22,13 g. m⁻²) dosahovali podobné hodnoty.

Najvyššie rozdiely v abundancii a biomase v mediálí sa vyskytovali v Račkových plesách. Najvyššiu početnosť spomedzi všetkých plies tejto časti Tatier sme zaznamenali v Strednom Račkovom plese, najvyššiu biomasu v Malom Račkovom plese a najnižšiu abundanciu a biomasu vo Vyšnom Račkovom plese (tab. 2). Dominantné postavenie v mediálí jazier v abundancii a biomase, rovnako ako v jazerách Vysokých Tatier malí O l i g o c h a e t a a C h i r o n o m i d æ.

Množstvo organickej hmoty v sedimentoch jazier ako potencionálnego zdroja potravy detritofágnych bentontov sa pohybovalo medzi 11,4—70,5 mg. cm⁻³ sedimentu (tab. 3). Z toho najvyšší podiel organickej hmoty bol sústredený v jemnej frakcii (FPOM) a najjemnejšej frakcii (UFPM), v hrubej frakcii (CPOM) bol najnižší. V jazerách, ktoré sme sledovali dvakrát, boli vyššie hodnoty organickej hmoty vždy v septembru, nižšie v júli, čo poukazuje na obohacovanie sa sedimentov organickou hmotou počas vegetačného obdobia. Množstvo organickej hmoty na dne jazier koreluje s abundanciou celkového zoobentosu (P < 0.028) a abundanciou (P < 0.0014), resp. biomasou (P < 0.020) máloštetinavcov (obr. 1). V ostatných skupinách sme takúto zavislosť nezistili. P r o b s t

Tab. 3. Celkové množstvo organickej hmoty v sedimentoch dna a množstvo organickej hmoty v jednotlivých veľkostranných frakciách niektorých plies v Západných Tatrách, vyjadrené v mg. cm⁻³ sedimentu

<table>
<thead>
<tr>
<th>Lokalita</th>
<th>Dátum</th>
<th>CPOM</th>
<th>FPOM</th>
<th>UFPOM</th>
<th>Spolu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vyšné Bystré pleso</td>
<td>18. 9. 1988</td>
<td>1,2</td>
<td>1,9</td>
<td>15,0</td>
<td>18,1</td>
</tr>
<tr>
<td>Vyšné Jamnicke pleso</td>
<td>13. 9. 1988</td>
<td>5,3</td>
<td>17,9</td>
<td>16,1</td>
<td>39,3</td>
</tr>
<tr>
<td>Nižné Jamnicke pleso</td>
<td>13. 9. 1988</td>
<td>0,1</td>
<td>5,8</td>
<td>19,4</td>
<td>25,3</td>
</tr>
<tr>
<td>Vyšné Račkovo pleso</td>
<td>15. 9. 1988</td>
<td>2,4</td>
<td>18,4</td>
<td>14,9</td>
<td>35,7</td>
</tr>
<tr>
<td>Malé Račkovo pleso</td>
<td>15. 9. 1988</td>
<td>10,6</td>
<td>18,2</td>
<td>27,7</td>
<td>56,5</td>
</tr>
<tr>
<td>Štvrté Roháčske pleso</td>
<td>24. 6. 1989</td>
<td>1,2</td>
<td>9,3</td>
<td>0,9</td>
<td>11,4</td>
</tr>
<tr>
<td></td>
<td>19. 9. 1989</td>
<td>0,3</td>
<td>6,0</td>
<td>19,3</td>
<td>25,6</td>
</tr>
<tr>
<td>Tretie Roháčske pleso</td>
<td>22. 6. 1989</td>
<td>0,1</td>
<td>10,2</td>
<td>7,7</td>
<td>18,0</td>
</tr>
<tr>
<td></td>
<td>19. 9. 1989</td>
<td>0,1</td>
<td>19,6</td>
<td>8,8</td>
<td>28,5</td>
</tr>
<tr>
<td>Druhé Roháčske pleso</td>
<td>22. 6. 1989</td>
<td>2,5</td>
<td>15,4</td>
<td>8,9</td>
<td>28,8</td>
</tr>
<tr>
<td></td>
<td>19. 9. 1989</td>
<td>2,5</td>
<td>23,6</td>
<td>9,6</td>
<td>35,7</td>
</tr>
<tr>
<td>Prvé Roháčske pleso</td>
<td>22. 6. 1989</td>
<td>0,1</td>
<td>5,2</td>
<td>10,1</td>
<td>15,4</td>
</tr>
<tr>
<td></td>
<td>23. 9. 1989</td>
<td>0,6</td>
<td>16,1</td>
<td>11,6</td>
<td>28,3</td>
</tr>
<tr>
<td>Tatliakovko pleso</td>
<td>23. 9. 1989</td>
<td>8,3</td>
<td>55,6</td>
<td>6,8</td>
<td>70,5</td>
</tr>
<tr>
<td>Zelené pliesko pod Zverovkou</td>
<td>24. 6. 1989</td>
<td>0,3</td>
<td>21,4</td>
<td>20,0</td>
<td>41,7</td>
</tr>
<tr>
<td></td>
<td>23. 9. 1989</td>
<td>0,2</td>
<td>10,6</td>
<td>18,8</td>
<td>29,6</td>
</tr>
</tbody>
</table>

134
Obr. 1. Vztah \(y = a + bx \) medzi abundanciou celkového zoobentosu (1), abundanciou (2), resp. biomasou (3) máloštetínavcov \((O l i g o c h a e t a) \) a množstvom orga-
nickej hmoty v sedimente. \(1 - r = 0,687; a = -564,4; b = 53,36; D_f = 8; P < 0,028; 2 - r = 0,681; a = -701,0; b = 34,90; D_f = 8; P < 0,0014; 3 - r = 0,715; a = -2,6; b = 0,12; D_f = 8; P < 0,020 \)

(1987) zistil koreláciu medzi abundanciou máloštetínavcov a množstvom partikulovaného uhlíka, dusíka a fosforu v sedimentoch Bodamského jazera.

SÚHRN

V mediálí 13 jazer Západných Tatier bolo zistených 9 taxonomic-kých skupín. Dominantné postavenie z hľadiska frekvencie výskytu zaujímali larvy pakomárov (Chironomidae), măloštetinavce (Oligochaeta) a lastúrniky (Bivalvia). Z hľadiska abundancie a biomas Oligochaeta a Chironomidae.

Abundancia zoobentosu v mediálnej zóne jazer sa pohybovala medzi 18—4 708 ind. m⁻² pri biomase (udávanej ako mokrá formalínová hmotnosť) 0,13—15,37 g. m⁻².

Množstvo organickej hmoty v sedimentoch jazer ako potencionálneho zdroja potravy detritofágnych bentontov sa pohybovalo medzi 11,4—70,5 mg. cm⁻³ (AFOM) sedimentu.

Bola zistená štatisticcky preukazná až významne preukazná lineárna korelácia medzi množstvom organickej hmoty a abundanciou celkového zoobentosu a abundanciou, resp. biomasou măloštetinavcov (Oligo-

Acidifikácia, ktorá postihuje takmer všetky jazerá v Západných Tatrách, sa dosiaľ na bentickej faune osídľujúcej mediál jazer neprejavuje.

LITERATÚRA

MACROZOOBENTHOS OF THE MEDIAL IN LAKES OF THE WEST TATRA

Ferdinand Šporka

Summary

In the medial of 13 lakes of the West Tatra 9 taxonomic groups of benthic animals were determined, with the dominant position as regards frequency of occurrence going to larvae of Chironomidae, Oligochaeta and Bivalvia. As regards abundance and biomass, priority went to Oligochaeta and Chironomidae.

Abundance of zoobenthos in the medial zone ranged between 18 and 4 708 ind. m⁻², with a biomass (stated as wet formalin weight) of 0.13—15.37 g. m⁻².

The quantity of organic matter in the lakes’ sediments as a potential nutrient source of detritophagous benthos ranged between 11.4 and 70.5 mg in 1 cm³ of sediment.

It has been found out the significant or even highly significant linear correlation between the quantity of organic matter and abundance of total zoobentos, and abundance or biomass of Oligochaeta.

Acidification affecting practically all the lakes in the West Tatra has not as yet made itself felt on the benthic fauna living in the medial of the lakes.

DAS MAKROZOOBENTHOS DES MEDIALS DER SEEN IN DER WESTLICHEN TATRA

Ferdinand Šporka

Zusammenfassung

Im Medial von 13 Seen in der Westlichen Tatra wurden 9 bentische taxonomische Gruppen festgestellt. Eine dominante Position in bezug auf die Frequenz nehmen die Larven von Chironomidae, Oligochaeta und Bivalvia ein. Hinsichtlich der Abundanz und der Biomasse überwiegen die Oligochaeta und Chironomidae.

Die Abundanz des Zoobenthos in der medialen Zone der Seen bewegte sich von 18—4 708 Ind. m⁻² und die Biomasse (angegeben als feuchte Formalinmasse) von 0.13—15.37 g. m⁻².

Die Menge der organischen Masse in den Sedimenten der Seen als (potentielle Nahrungsquelle detritophager Benthonten) schwankte zwischen 11.4—70.5 mg in 1 cm³ Sediment.

Es wurde nachgewiesen eine signifikante bis hochsignifikante lineare Korrela-
MAKROZOOBENTOS МЕДИАЛИ ОЗЕР В ЗАПАДНЫХ ТАТРАХ

Фердинанд Шпорка

Резюме

В медиали 13 озер Западных Татр было установлено 9 бентических таксономических групп. Доминирующее положение с точки зрения частотности встречаемости занимают личинки Chironomidae, Oligochaeta и Bivalvia, с точки зрения численности и биомассы Oligochaeta и Chironomidae.

Численность зообентоса в средней зоне озер колеблется в пределах 18—4 708 инд. м² при биомассе (приводимой в виде формалиновой влажной массы) 0,13—15,37 г/м².

Количество органической массы в осадках озер (потенционального источника питания детритофагных бентонтов) находилось в пределах 11,4—70,5 мг в 1 см³ осадков.

Статистически была определена или значительно определена линейная корреляция между количеством органической массы и численностью тотального зообентоса и численности или биомассой Oligochaeta.

Ацидификация, которая коснулась почти всех озер в Западных Татрах, пока еще не оказала влияние на бентическую фауну, живущую в средних слоях озер.

Adresa autora: RNDr. Ferdinand Športka, CSc., Štst voolgie a ekosozologie SAV, Drięnová 3, 821 02 Bratislava

Recenzoval: RNDr. Ilja Krno, CSc.